What is Molybdenum Disulfide?
disulfide Molybdenum is an inorganic compound with the chemical formula MoS2. it is a dark gray or black solid powder with a layered structure in which each layer consists of alternating layers of sulfur and molybdenum atoms. This layered structure allows molybdenum disulfide to exhibit unique physical and chemical properties in certain areas.
Molybdenum disulfide powder is an important inorganic non-metallic material, that is a solid powder formed by a chemical reaction between the elements sulfur and molybdenum, with unique physical and chemical properties, and is also widely used in a variety of fields.
In looks, molybdenum disulfide powder appears being a dark gray or black solid powder with a metallic luster. Its particle size is usually from a few nanometers and tens of microns, with higher specific surface and good fluidity. The lamellar structure of molybdenum disulfide powder is one of their important features. Each lamella includes alternating sulfur and molybdenum atoms, which lamellar structure gives molybdenum disulfide powder good lubricating and tribological properties.
With regards to chemical properties, molybdenum disulfide powder has high chemical stability and fails to easily interact with acids, alkalis as well as other chemicals. It offers good oxidation and corrosion resistance and may remain stable under high temperature, high-pressure and high humidity. Another significant property of molybdenum disulfide powder is its semiconductor property, which could show good electrical conductivity and semiconductor properties under certain conditions, and is also widely used inside the manufacture of semiconductor devices and optoelectronic materials.
With regards to applications, molybdenum disulfide powder is widely used in the field of lubricants, where you can use it being an additive to lubricants to boost lubrication performance and lower friction and wear. It is also found in the manufacture of semiconductor devices, optoelectronic materials, chemical sensors and composite materials. Furthermore, molybdenum disulfide powder bring an additive in high-temperature solid lubricants and solid lubricants, along with the manufacture of special alloys with higher strength, high wear resistance and high corrosion resistance.
Physical Properties of Molybdenum Disulfide:
Molybdenum disulfide includes a metallic luster, however it has poor electrical conductivity.
Its layered structure gives molybdenum disulfide good gliding properties along the direction in the layers, a property that is certainly widely utilized in tribology.
Molybdenum disulfide has low conductivity for heat and electricity and has good insulating properties.
Under a high magnification microscope, molybdenum disulfide can be observed to exhibit a hexagonal crystal structure.
Chemical Properties:
Molybdenum disulfide can interact with oxygen at high temperatures to form MoO3 and SO2.
In a reducing atmosphere, molybdenum disulfide can be reduced to elemental molybdenum and sulfur.
In an oxidizing atmosphere, molybdenum disulfide can be oxidized to molybdenum trioxide.
Strategies for preparation of molybdenum disulfide:
Molybdenum disulfide can be prepared in a variety of ways, the most typical of which would be to use molybdenum concentrate because the raw material and react it with sulfur vapor at high temperatures to obtain molybdenum disulfide in the nanoscale. This preparation method usually requires high temperature conditions, but can be produced on the large scale. Another preparation strategy is to obtain molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This technique is comparatively low-temperature, but larger-sized molybdenum disulfide crystals can be produced.
Superconducting properties of molybdenum disulfide
Molybdenum disulfide can be prepared in a variety of ways, the most typical of which would be to use molybdenum concentrate because the raw material and react it with sulfur vapor at high temperatures to obtain molybdenum disulfide in the nanoscale. This preparation method usually requires high temperature conditions, but can be produced on the large scale. Another preparation strategy is to obtain molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This technique is comparatively low-temperature, but larger-sized molybdenum disulfide crystals can be produced.
Superconducting properties of molybdenum disulfide
The superconducting transition temperature of a material is an important parameter in superconductivity research. Molybdenum disulfide exhibits superconducting properties at low temperatures, with a superconducting transition temperature of around 10 Kelvin. However, the superconducting transition temperature of molybdenum disulfide is comparatively low compared to conventional superconductors. However, this may not prevent its utilization in low-temperature superconductivity.
Trying to find MoS2 molybdenum disulfide powder? Contact Now!
Application of molybdenum disulfide in superconducting materials
Preparation of superconducting materials: Making use of the semiconducting properties of molybdenum disulfide, a brand new form of superconducting material can be prepared. By doping molybdenum disulfide with certain metal elements, its electronic structure and properties can be changed, thus getting a new form of material with excellent superconducting properties. This material might have potential applications in the field of high-temperature superconductivity.
Superconducting junctions and superconducting circuits: Molybdenum disulfide may be used to prepare superconducting junctions and superconducting circuits. Because of its layered structure, molybdenum disulfide has excellent electrical properties both in monolayer and multilayer structures. By combining molybdenum disulfide along with other superconducting materials, superconducting junctions and circuits with higher critical current densities can be fabricated. These structures may be used to make devices like superconducting quantum calculators and superconducting magnets.
Thermoelectric conversion applications: Molybdenum disulfide has good thermoelectric conversion properties. In thermoelectric conversion, molybdenum disulfide can be employed to transform thermal energy into electrical energy. This conversion is extremely efficient, eco-friendly and reversible. Molybdenum disulfide therefore has an array of applications in the field of thermoelectric conversion, for example in extreme environments like space probes and deep-sea equipment.
Electronic device applications: Molybdenum disulfide can be utilized in electronic devices due to its excellent mechanical strength, light transmission and chemical stability. For example, molybdenum disulfide can be utilized inside the manufacture of field effect transistors (FETs), optoelectronic devices and solar cells. These products have advantages like high-speed and low power consumption, and thus have an array of applications in the field of microelectronics and optoelectronics.
Memory device applications: Molybdenum disulfide can be utilized in memory devices due to its excellent mechanical properties and chemical stability. For example, molybdenum disulfide may be used to create a memory device with higher density and high speed. Such memory devices can start to play an important role in computers, cell phones as well as other digital devices by increasing storage capacity and data transfer speeds.
Energy applications: Molybdenum disulfide even offers potential applications inside the energy sector. For example, a higher-efficiency battery or supercapacitor can be prepared using molybdenum disulfide. This kind of battery or supercapacitor could provide high energy density and long life, and therefore be used in electric vehicles, aerospace and military applications.
Medical applications: Molybdenum disulfide even offers numerous potential applications inside the medical field. For example, the superconducting properties of molybdenum disulfide can be employed to generate magnets for magnetic resonance imaging (MRI). Such magnets have high magnetic field strength and uniformity, which could increase the accuracy and efficiency of medical diagnostics. Furthermore, molybdenum disulfide may be used to make medical devices and biosensors, among others.
Other application areas of molybdenum disulfide:
Molybdenum disulfide is utilized being a lubricant:
Because of its layered structure and gliding properties, molybdenum disulfide powder is widely used being an additive in lubricants. At high temperatures, high pressures or high loads, molybdenum disulfide can form a protective film that reduces frictional wear and increases the operating efficiency and service life of equipment. For example, molybdenum disulfide is utilized being a lubricant to reduce mechanical wear and save energy in areas like steel, machine building and petrochemicals.
Similar to most mineral salts, MoS2 includes a high melting point but begins to sublimate in a relatively low 450C. This property is useful for purifying compounds. Due to the layered structure, the hexagonal MoS 2 is a wonderful “dry” lubricant, the same as graphite. It as well as its cousin, tungsten disulfide, bring mechanical parts (e.g., inside the aerospace industry), in two-stroke engines (what type found in motorcycles), so when surface coatings in gun barrels (to lower friction between bullets and ammunition).
Molybdenum disulfide electrocatalyst:
Molybdenum disulfide has good redox properties, which is the reason it really is used being an electrocatalyst material. In electrochemical reactions, molybdenum disulfide bring an intermediate product that efficiently transfers electrons and facilitates the chemical reaction. For example, in fuel cells, molybdenum disulfide bring an electrocatalyst to boost the energy conversion efficiency in the battery.
Molybdenum disulfide fabricates semiconductor devices:
Because of its layered structure and semiconducting properties, molybdenum disulfide is utilized to manufacture semiconductor devices. For example, Molybdenum disulfide is utilized inside the manufacture of field effect transistors (FETs), which are widely used in microelectronics because of their high-speed and low power consumption. Furthermore, molybdenum disulfide may be used to manufacture solar cells and memory devices, amongst other things.
Molybdenum disulfide photovoltaic materials:
Molybdenum disulfide includes a wide bandgap and high light transmittance, which is the reason it really is used being an optoelectronic material. For example, molybdenum disulfide may be used to manufacture transparent conductive films, which may have high electrical conductivity and light-weight transmittance and therefore are widely used in solar cells, touch screens and displays. Furthermore, molybdenum disulfide may be used to manufacture optoelectronic devices and photoelectric sensors, among others.
Molybdenum disulfide chemical sensors:
Because of its layered structure and semiconducting properties, molybdenum disulfide is utilized being a chemical sensor material. For example, molybdenum disulfide may be used to detect harmful substances in gases, like hydrogen sulfide and ammonia. Furthermore, molybdenum disulfide may be used to detect biomolecules and drugs, among others.
Molybdenum disulfide composites:
Molybdenum disulfide can be compounded along with other materials to form composites. For example, compounding molybdenum disulfide with polymers can produce composites with excellent tribological properties and thermal stability. Furthermore, composites of molybdenum disulfide with metals can be prepared with excellent electrical conductivity and mechanical properties.
High quality Molybdenum disulfide supplier
If you are looking for high-quality Molybdenum disulfide powder or if you want to know more information about MoS2 Molybdenum disulfide powder, please feel free to contact us and send an inquiry. ([email protected])